[10:30] Interpolation and pulse shaping

• Reconstruction can be expressed in terms of a mixed (continuous and discrete) signal convolution.

$$\tilde{y}(t) = \sum_{n=-\infty}^{\infty} y[n] p(t - T_s n)$$

- Ideally, we would use an infinite, two-sided sinc for p(t)
 - This is a perfect lowpass filter to enforce the sampling theorem ($f_s > 2f_{max}$)
 - Alternatives with finite duration:
 - Rectangular pulse with width *T_s*
 - Triangular pulse with width $2T_s$
 - Truncated sinc with zero crossings at multiples of T_s
 - Raised cosine with zero crossings at multiples of T_s
- Oversampling greatly improves the quality of the reconstruction
- Raised cosine
 - Still infinite in length, but has tails that decay much quicker than the sinc, so truncation has less effect
 - Parameterized by rolloff factor α (also sometimes called β)
 - $\alpha = 0$: identical to sinc, frequency response is a rectangle
 - $\alpha = 1$: Frequency response looks like $1 + \cos(f)$
 - $\alpha = 0$ is a better lowpass filter, but $\alpha = 1$ has faster decaying tails.
- What happens when we truncate the sinc in the time domain?
 - No longer a perfect rectangle in the frequency domain

[11:20] Pulse amplitude modulation

- To transmit data, convert it to a sequence of bits, then convert to sequence of pulses.
 - Example: 2-PAM. Each bit becomes a pulse. A bit of 1 becomes a positive amplitude pulse and and bit of 0 becomes a negative amplitude pulse.

- It is possible to map multiple bits to each pulse to increase the data rate
 - 4-PAM example: Each pair of bits gets mapped to a pulse
 - 11 gets mapped to −3
 - 10 gets mapped to −1
 - 00 gets mapped to +1
 - 01 gets mapped to +3
 - Uniform spacing of symbol amplitudes (each spaced by distance of 2)
 - Mapping more bits to each symbol makes it harder to decode in the presence of noise.
- Peak in the baseband signal will be no greater than twice the maximum symbol amplitude.

- Upsampling by *L* lowers the data rate by a factor of *L* but also uses less bandwidth by a factor of *L*.
 - Transmission bandwidth when using raised cosine:

$$\frac{1}{2}f_{\rm sym}(1+\alpha)$$